

Plasma-based particle acceleration & energy coupling in Magnetized Plasmas

Aakash Sahai


Vijay Harid, Mark Golkowski

NSF (applied)

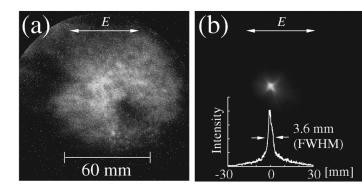
2019 ATF Users Meeting: New Proposal

Katsouleas, T., Dawson, J. M., Phys. Rev. Lett. 51, 392 (1983)

Linear regime

Transverse B-fieldUpper-Hybrid Wave Mode

TABLE I. Sample parameters to reach 1 TeV.


$n \text{ (cm}^{-3})$	λ (μm)	ε	B_{kG}	Ду (m)	Δx (m)	Δx_{BWA} (m)	P_i (W/cm ²)
1017	10	0.9	90	3	35	3500	1015
10^{18}	1	0.5	50	0.6	20	850	10^{16}
10^{20}	0.3	0.2	600	0.5	5	1000	$5 imes 10^{16}$

 $\Delta y >>$ plasma dimension!

NO dephasing

FIG. 1. An electron trapped by a potential trough moving at $\vec{\nabla}_{\rm ph}$ sees an electric field from the Lorentz transformation $\gamma_{\rm ph}\vec{\nabla}_{\rm ph}\times\vec{\rm B}/c$ which accelerates it across the wave front.

Axial B-field - L and R modes

better emittance more charge

but attributed to change in pre-plasma

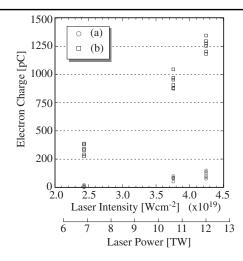
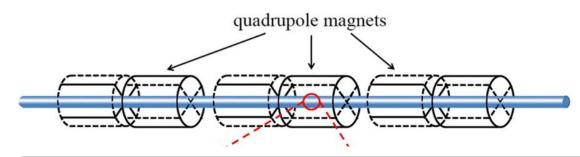



FIG. 4. The intensity dependence of the total charge of the accelerated electrons for $N_{\rm He} = 4 \times 10^{19} \ {\rm cm}^{-3}$. (a) $B = 0 \ {\rm T}$ and (b) $B = 0.20 \ {\rm T}$. The laser power is also indicated in the horizontal axis.

FIG. 2. Typical images of electron deposition on the DRZ screen. $N_{\text{He}} = 4 \times 10^{19} \,\text{cm}^{-3}$ and of 12 TW laser pulse. (a) B = 0.7 and (b) B = 0.20 T.

L. Yi., et al, Scientific Reports 4, 4171 (2014)

Quad magnets – static field applied

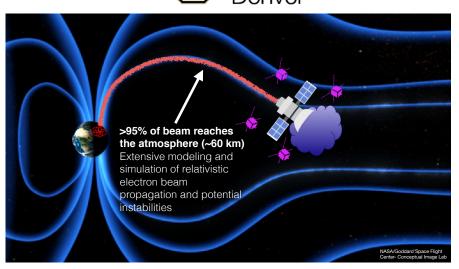
Wakefield driver – quality preserved

other past works -

- 1. analyzed the effect of significant gyro-frequency to plasma frequency ratio
- 2. shown that excessive axial field can lead to disruption of the plasma bubble 3. etc.

Can applied B field - better driver guiding & improve accelerated beam quality

continuous focusing needed - magnetized RF cavity


PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 072001 (2005)

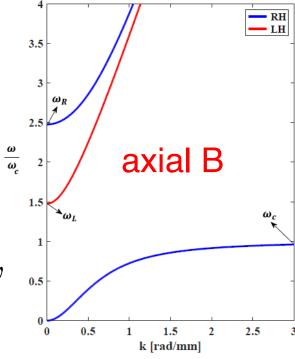
Effects of high solenoidal magnetic fields on rf accelerating cavities

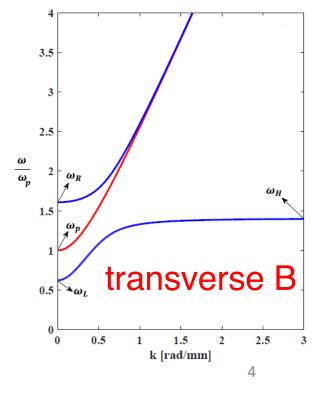
University of Colorado Denver

relevant radiation-belt physics studies using relativistic electron beam onboard a space-craft

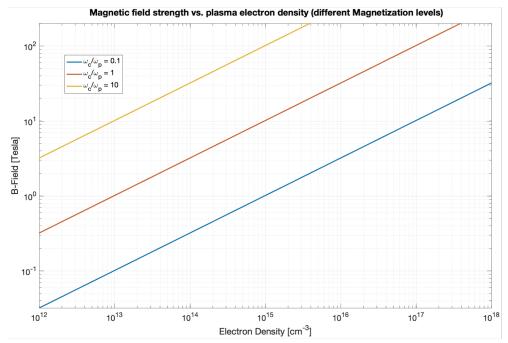
Lab-based modeling – wave-particle interaction and energy coupling

Linear plasma wave

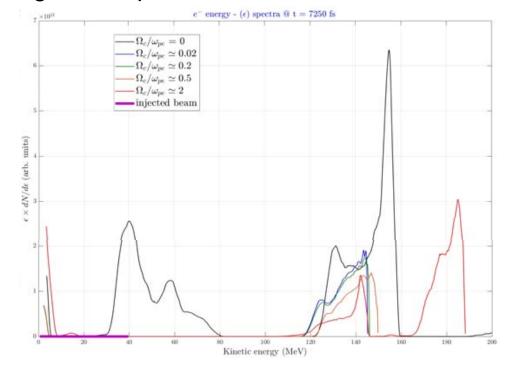

Plasma dispersion relations


$$\omega_c \simeq \Omega_c \simeq \frac{eB}{m_e}$$

$$\omega_{pe} = \sqrt{\frac{n_0 e^2}{\epsilon_0 m_e}}$$


Transverse EM mode : ω

$$\omega = k v_b \pm n \frac{\omega_c}{\gamma}$$



10 μm CO₂ laser – naturally **1/100 plasma density**

Co-located with a tunable and ultrashort electron beam

Suitable for laser-ionized or laser-driven magnetized plasma acceleration studies

2.5D PIC simulations – effect of magnetization level on beam energy spectra

Optimal magnetization levels – for accessing different magnetized plasma waves

Experimental Setup

ultra-relativistic magnetized plasma wave excitation CO_2 laser laser diagnostics beam Gas Cell dipole dipole magnet magnet applied electron electron beam beam magnetic diagnostics field

Plans

Year 1

Laser-ionized plasma – beam-plasma interactions

- Pressure scan with fixed applied B-field
- Axial and transverse B-field configuration
- Preliminary studies with rare-earth or other permanent magnet
- Observe beam energy spectrum
- Beam profile (transverse)

Year 2

Laser-ionized plasma – beam-plasma interactions

- scan over beam energies
- Scan over beam properties (spot-size, charge length)
- scan over magnetic field orientations

Plans contd...

Year 2 continued

- Preliminary laser-driven waves in magnetized plasmas (effect on laser exit mode and laser energy)

Year 3

Laser and beam-plasma – magnetized plasmas

- Try stronger magnetic fields (superconducting ? others...)
- Laser-driven plasma interactions with magnetic field orientations
- Nonlinear laser-driven plasma wave and ultrashort beam overlap
- Optimize pathways for beam energy gain and emittance enhancement

Electron Beam Requirements

Parameter	Nominal	Requested
Beam Energy (MeV)	50-65	10 – 50 MeV
Bunch Charge (nC)	0.1-2.0	Bunch length & emittance vary with charge
Compression	Down to 100 fs (up to 1 kA peak current)	0.1 to 10 ps
Transverse size at IP (sigma, um)	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.
Normalized Emittance (um)	1 (at 0.3 nC)	Variable with bunch charge
Rep. Rate (Hz)	1.5	3 Hz also available if needed
Trains mode	Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.

Special Equipment:

magnetic field – permanent or other electromagnet setup transverse deflecting cavity, bolometer

CO₂ Laser Requirements

Year 1 (regen only, 1.5 or 3 Hz)

3 GW max (2 ps, 6 mJ)

~ 10.2 um

 $M^2 \sim 1.5$

linear polarization (circular available at slightly reduced power)

likely to be sufficient for laser ionization

Year 2 (full power, ~1 shot per minute)

isotopic gas in final amplifier

2 TW max (2 ps, 4 J, single pulse)

10.2 um

 $M^2 \sim 2$

linear polarization

Required for

2019 Experiment Time Estimates

Run Hours (include setup time in hours estimate):

Number of electron beam only hours: 0

Number of CO₂ laser hours

delivered to laser experiment hall ("FEL room"): 0

Number of CO₂ laser hours, + ebeam,

delivered to electron beam experiment hall: 60 - 80 hours

Overall % setup time: 25-35%

Hazards & installation requirements:

Large installation (chamber, insertion device etc...): Y/N

Laser use (other than CO₂): No

Cryogens: Possibly needed in Year 3

Introducing new magnetic elements: Yes Critical

Introducing new materials into the beam path: No

Any other foreseeable beam line modifications: No